14 C°
Видеонаблюдение

Передача радиосигнала

2065
ИП 212-79 «Аврора ДА»
Производитель:
Аругс-Спект
Страна:
Россия
716

Основа работы подавляющего количества аппаратуры, применяемой в системах
безопасности – передача радиосигналов. В данной статье обратимся к
некоторым фактам, касающимся данного явления, и рассмотрим виды
радиосигналов.

Радиосигналы, на которых основывается, в частности спутниковая связь и
другие типы связи, представляют собой электромагнитные волны. Система
связи использует различные виды радиосигналов для передачи информации
через воздушную среду от одной точки к другой.

Передача радиосигнала

Радиосигнал распространяется от антенны передающей станции к антенне
приемной. Передача радиосигналаосуществляется благодаря нескольким
факторам. Сигнал, подаваемый на антенну, характеризуется амплитудой,
частотой и фазой. За счет изменения этих параметров можно посредством
радиосигналов передавать информацию. Амплитуда определяет интенсивность
радиочастотного сигнала. Мерой амплитуды является мощность, которая
аналогична затраченным усилиям человека, преодолевающего на велосипеде
определенное расстояние. Мощность — это количество энергии, необходимой
для преодоления сигналом определенного расстояния. Если мощность
возрастает, то увеличивается и дальность связи. Передача радиосигнала
происходит через воздушную среду, что обусловливает уменьшение его
амплитуды. В случае отсутствия препятствий радиосигналы испытывают
потери в свободном пространстве, они являются одной из причин затухания
сигнала, и передача радиосигнала теряет прежнее качество. Амплитуда
сигнала уменьшается экспоненциально по мере увеличения расстояния между
передатчиком и приемником. Экспоненциальное затухание модулированного
сигнала вызывает атмосфера, если он распространяется достаточно далеко
от антенны. Следовательно, сигнал должен обладать достаточной мощностью
для того, чтобы преодолеть нужное расстояние и иметь после этого
уровень, достаточный для выделения его из шумов приемным устройством.

Усилитель радиосигнала

Способность приемника улавливать сигнал зависит и от наличия других
радиочастотных сигналов. Иными словами, для повышения качества передачи
сигнала необходим усилитель радиосигнала. Функция усилителя заключается
в увеличении мощности радиостанции, подводимой к внешней антенне, без
искажений в самой структуре сигнала. Усилитель радиосигнала вносит
изменения в характеристику аппаратуры только при работе на передачу.
Чувствительность радиостанции ограничена не усилением, а уровнем шумов
(как собственных, так и эфирных), т.е. способностью выделять полезный
сигнал на фоне помех. Усилитель радиосигнала включается в разрыв
антенного кабеля, т.е. между радиостанцией и внешней антенной и
подключается толстыми проводами к мощному источнику питания. Длина
высокочастотного коаксиального кабеля, соединяющего радиостанцию и
усилитель, может быть любая, а качеству заделки разъемов на его конце и
на конце антенного кабеля стоит уделить особое внимание.

Специалисты
рекомендуют применять усилитель радиосигнала с выходной мощностью 100 —
200 Ватт. В этом случае можно ожидать увеличения дальности связи, при
меньшей мощности. Антенна, подключенная к усилителю, должна быть хорошо
настроена (иметь КСВ близкий к 1) и содержаться в порядке, тогда можно
будет не опасаться за дальнейшее состояние усилителя. Задумываясь о
том, чтобы приобрести усилитель радиосигнала, стоит обратить внимание
на такую характеристику, как фаза. Фаза соответствует тому, насколько
далеко сигнал отстоит от какой-то исходной точки. Традиционно принято
считать, что каждый цикл сигнала соответствует повороту фазы на 360
градусов. Например, сдвиг фазы сигнала может составлять 90 градусов,
это означает, что сдвиг фазы равен четверти (90/360 = 1/4) от полного
цикла сигнала. Изменение фазы может быть использовано для передачи
информации. Так, сдвиг фазы сигнала на 30 градусов можно представить
как двоичную 1, а сдвиг фазы на 60 градусов — как двоичный 0. Важным
преимуществом представления данных в виде сдвигов фазы является
снижение влияния затухания сигнала при его распространении через среду.
Затухание обычно влияет на амплитуду, а не на фазу сигнала.

Виды радиосигналов

Наиболее продуктивной областью применения радиосигналов является
навигация.
Принцип работы спутниковой системы
строится как раз на таком механизме. В рамках спутниковой системы
различаются различные виды радиосигналов. Так, например, в системе
ГЛОНАСС каждый штатный НКА в ОГ постоянно излучает шумоподобные непрерывные
навигационные радиосигналы в двух диапазонах частот 1600 МГц и 1250
МГц. В НАП навигационные измерения в двух диапазонах частот позволяют
исключить ионосферные погрешности измерений.

Каждый НКА имеет цезиевый
АСЧ, используемый для формирования бортовой шкалы (БШВ) и навигационных
радиосигналов 1600 МГц и 1250 МГц. Такие виды радиосигналов, как
шумоподобные навигационные сигналы в ОГ НКА различаются несущими
частотами. Поскольку для взаимноантиподных НКА в орбитальных плоскостях
можно применять одинаковые несущие частоты, то для 24 штатных НКА
минимально необходимое число несущих частот в каждом диапазоне частот
равно 12. Из двух взаимноантиподных НКА хотя бы один будет находиться
ниже местного горизонта по отношению к космическому потребителю.
Практически невозможно применить на космическом объекте одну
широконаправленную антенну, способную принимать навигационные
радиосигналы от всех «видимых» НКА выше и ниже местного горизонта.
Поэтому в НАП на космическом объекте применяют: либо одну
широконаправленную антенну для приема навигационных радиосигналов от
НКА, находящихся выше местного горизонта; либо несколько антенн и
несколько приемников для приема навигационных радиосигналов от НКА,
находящихся выше и ниже местного горизонта. В обоих вариантах НАП на
космическом объекте будет осуществлять эффективную пространственную
селекцию навигационных радиосигналов от взаимноантиподных НКА.

Виды радиосигналов навигационной системы взаимноантиподных НКА с
одинаковыми несущими частотами будут надежно разделены в НАП на
космическом объекте за счет пространственной и доплеровской селекции.

Рассмотрим ещё некоторые виды радиосигналов — узкополосный и
широкополосный. Узкополосный навигационный радиосигнал 1600 МГц
образуется посредством манипуляции фазы несущего колебания на 180?
периодической двоичной псевдослучайной последовательностью (ПСП1) с
тактовой частотой. Путем инвертирования ПСП1 передаются метки времени
(МВ) бортовой шкалы времени (БШВ) НКА и двоичные символы цифровой
информации (ЦИ).

Широкополосный навигационный радиосигнал 1600 МГц образуется
посредством манипуляции фазы несущего колебания на 180? периодической
двоичной последовательностью ПСП2 с тактовой частотой F2=5,11 МГц.
Путем инвертирования ПСП2 передаются двоичные символы ЦИ длительностью
20 мс.

Основа работы подавляющего количества аппаратуры, применяемой в системах
безопасности – передача радиосигналов. В данной статье обратимся к
некоторым фактам, касающимся данного явления, и рассмотрим виды
радиосигналов.

Радиосигналы, на которых основывается, в частности спутниковая связь и
другие типы связи, представляют собой электромагнитные волны. Система
связи использует различные виды радиосигналов для передачи информации
через воздушную среду от одной точки к другой.

Передача радиосигнала

Радиосигнал распространяется от антенны передающей станции к антенне
приемной. Передача радиосигналаосуществляется благодаря нескольким
факторам. Сигнал, подаваемый на антенну, характеризуется амплитудой,
частотой и фазой. За счет изменения этих параметров можно посредством
радиосигналов передавать информацию. Амплитуда определяет интенсивность
радиочастотного сигнала. Мерой амплитуды является мощность, которая
аналогична затраченным усилиям человека, преодолевающего на велосипеде
определенное расстояние. Мощность — это количество энергии, необходимой
для преодоления сигналом определенного расстояния. Если мощность
возрастает, то увеличивается и дальность связи. Передача радиосигнала
происходит через воздушную среду, что обусловливает уменьшение его
амплитуды. В случае отсутствия препятствий радиосигналы испытывают
потери в свободном пространстве, они являются одной из причин затухания
сигнала, и передача радиосигнала теряет прежнее качество. Амплитуда
сигнала уменьшается экспоненциально по мере увеличения расстояния между
передатчиком и приемником. Экспоненциальное затухание модулированного
сигнала вызывает атмосфера, если он распространяется достаточно далеко
от антенны. Следовательно, сигнал должен обладать достаточной мощностью
для того, чтобы преодолеть нужное расстояние и иметь после этого
уровень, достаточный для выделения его из шумов приемным устройством.

Усилитель радиосигнала

Способность приемника улавливать сигнал зависит и от наличия других
радиочастотных сигналов. Иными словами, для повышения качества передачи
сигнала необходим усилитель радиосигнала. Функция усилителя заключается
в увеличении мощности радиостанции, подводимой к внешней антенне, без
искажений в самой структуре сигнала. Усилитель радиосигнала вносит
изменения в характеристику аппаратуры только при работе на передачу.
Чувствительность радиостанции ограничена не усилением, а уровнем шумов
(как собственных, так и эфирных), т.е. способностью выделять полезный
сигнал на фоне помех. Усилитель радиосигнала включается в разрыв
антенного кабеля, т.е. между радиостанцией и внешней антенной и
подключается толстыми проводами к мощному источнику питания. Длина
высокочастотного коаксиального кабеля, соединяющего радиостанцию и
усилитель, может быть любая, а качеству заделки разъемов на его конце и
на конце антенного кабеля стоит уделить особое внимание.

Специалисты
рекомендуют применять усилитель радиосигнала с выходной мощностью 100 —
200 Ватт. В этом случае можно ожидать увеличения дальности связи, при
меньшей мощности. Антенна, подключенная к усилителю, должна быть хорошо
настроена (иметь КСВ близкий к 1) и содержаться в порядке, тогда можно
будет не опасаться за дальнейшее состояние усилителя. Задумываясь о
том, чтобы приобрести усилитель радиосигнала, стоит обратить внимание
на такую характеристику, как фаза. Фаза соответствует тому, насколько
далеко сигнал отстоит от какой-то исходной точки. Традиционно принято
считать, что каждый цикл сигнала соответствует повороту фазы на 360
градусов. Например, сдвиг фазы сигнала может составлять 90 градусов,
это означает, что сдвиг фазы равен четверти (90/360 = 1/4) от полного
цикла сигнала. Изменение фазы может быть использовано для передачи
информации. Так, сдвиг фазы сигнала на 30 градусов можно представить
как двоичную 1, а сдвиг фазы на 60 градусов — как двоичный 0. Важным
преимуществом представления данных в виде сдвигов фазы является
снижение влияния затухания сигнала при его распространении через среду.
Затухание обычно влияет на амплитуду, а не на фазу сигнала.

Виды радиосигналов

Наиболее продуктивной областью применения радиосигналов является
навигация.
Принцип работы спутниковой системы
строится как раз на таком механизме. В рамках спутниковой системы
различаются различные виды радиосигналов. Так, например, в системе
ГЛОНАСС каждый штатный НКА в ОГ постоянно излучает шумоподобные непрерывные
навигационные радиосигналы в двух диапазонах частот 1600 МГц и 1250
МГц. В НАП навигационные измерения в двух диапазонах частот позволяют
исключить ионосферные погрешности измерений.

Каждый НКА имеет цезиевый
АСЧ, используемый для формирования бортовой шкалы (БШВ) и навигационных
радиосигналов 1600 МГц и 1250 МГц. Такие виды радиосигналов, как
шумоподобные навигационные сигналы в ОГ НКА различаются несущими
частотами. Поскольку для взаимноантиподных НКА в орбитальных плоскостях
можно применять одинаковые несущие частоты, то для 24 штатных НКА
минимально необходимое число несущих частот в каждом диапазоне частот
равно 12. Из двух взаимноантиподных НКА хотя бы один будет находиться
ниже местного горизонта по отношению к космическому потребителю.
Практически невозможно применить на космическом объекте одну
широконаправленную антенну, способную принимать навигационные
радиосигналы от всех «видимых» НКА выше и ниже местного горизонта.
Поэтому в НАП на космическом объекте применяют: либо одну
широконаправленную антенну для приема навигационных радиосигналов от
НКА, находящихся выше местного горизонта; либо несколько антенн и
несколько приемников для приема навигационных радиосигналов от НКА,
находящихся выше и ниже местного горизонта. В обоих вариантах НАП на
космическом объекте будет осуществлять эффективную пространственную
селекцию навигационных радиосигналов от взаимноантиподных НКА.

Виды радиосигналов навигационной системы взаимноантиподных НКА с
одинаковыми несущими частотами будут надежно разделены в НАП на
космическом объекте за счет пространственной и доплеровской селекции.

Рассмотрим ещё некоторые виды радиосигналов — узкополосный и
широкополосный. Узкополосный навигационный радиосигнал 1600 МГц
образуется посредством манипуляции фазы несущего колебания на 180?
периодической двоичной псевдослучайной последовательностью (ПСП1) с
тактовой частотой. Путем инвертирования ПСП1 передаются метки времени
(МВ) бортовой шкалы времени (БШВ) НКА и двоичные символы цифровой
информации (ЦИ).

Широкополосный навигационный радиосигнал 1600 МГц образуется
посредством манипуляции фазы несущего колебания на 180? периодической
двоичной последовательностью ПСП2 с тактовой частотой F2=5,11 МГц.
Путем инвертирования ПСП2 передаются двоичные символы ЦИ длительностью
20 мс.